New solar energy conversion process could revamp solar power production
A small PETE device made with cesium-coated gallium nitride glows while being tested inside an ultra-high vacuum chamber. The tests proved that the process simultaneously converted light and heat energy into electrical current. Credit: Photo courtesy of Nick Melosh, Stanford University
Stanford engineers have figured out how to simultaneously use the light and heat of the sun to generate electricity in a way that could make solar power production more than twice as efficient as existing methods and potentially cheap enough to compete with oil.
Unlike photovoltaic technology currently used in solar panels - which becomes less efficient as the temperature rises - the new process excels at higher temperatures.
Called 'photon enhanced thermionic emission,' or PETE, the process promises to surpass the efficiency of existing photovoltaic and thermal conversion technologies.
"This is really a conceptual breakthrough, a new energy conversion process, not just a new material or a slightly different tweak," said Nick Melosh, an assistant professor of materials science and engineering, who led the research group. "It is actually something fundamentally different about how you can harvest energy."
And the materials needed to build a device to make the process work are cheap and easily available, meaning the power that comes from it will be affordable.
Melosh is an assistant professor of materials science and engineering, and is senior author of a paper describing the tests the researchers conducted. It was published online August 1, in Nature Materials.
"Just demonstrating that the process worked was a big deal," Melosh said. "And we showed this physical mechanism does exist, it works as advertised."
Most photovoltaic cells, such as those used in rooftop solar panels, use the semiconducting material silicon to convert the energy from photons of light to electricity. But the cells can only use a portion of the light spectrum, with the rest just generating heat.
This heat from unused sunlight and inefficiencies in the cells themselves account for a loss of more than 50 percent of the initial solar energy reaching the cell.
If this wasted heat energy could somehow be harvested, solar cells could be much more efficient. The problem has been that high temperatures are necessary to power heat-based conversion systems, yet solar cell efficiency rapidly decreases at higher temperatures.
Until now, no one had come up with a way to wed thermal and solar cell conversion technologies.
Melosh's group figured out that by coating a piece of semiconducting material with a thin layer of the metal cesium, it made the material able to use both light and heat to generate electricity.
"What we've demonstrated is a new physical process that is not based on standard photovoltaic mechanisms, but can give you a photovoltaic-like response at very high temperatures," Melosh said. "In fact, it works better at higher temperatures. The higher the better."
While most silicon solar cells have been rendered inert by the time the temperature reaches 100 degrees Celsius, the PETE device doesn't hit peak efficiency until it is well over 200 degrees C.
Because PETE performs best at temperatures well in excess of what a rooftop solar panel would reach, the devices will work best in solar concentrators such as parabolic dishes, which can get as hot as 800 degrees C. Dishes are used in large solar farms similar to those proposed for the Mojave Desert in southern California and usually include a thermal conversion mechanism as part of their design, which offers another opportunity for PETE to help generate electricity, as well as minimizing costs by meshing with existing technology.
"The light would come in and hit our PETE device first, where we would take advantage of both the incident light and the heat that it produces, and then we would dump the waste heat to their existing thermal conversion systems," Melosh said. "So the PETE process has two really big benefits in energy production over normal technology."
Photovoltaic systems never get hot enough for their waste heat to be useful in thermal energy conversion, but the high temperatures at which PETE performs are perfect for generating usable high temperature waste heat. Melosh calculates the PETE process can get to 50 percent efficiency or more under solar concentration, but if combined with a thermal conversion cycle, could reach 55 or even 60 percent - almost triple the efficiency of existing systems.
The team would like to design the devices so they could be easily bolted on to existing systems, making conversion relatively inexpensive.
The researchers used a gallium nitride semiconductor in the 'proof of concept' tests. The efficiency they achieved in their testing was well below what they have calculated PETE's potential efficiency to be, which they had anticipated. But they used gallium nitride because it was the only material that had shown indications of being able to withstand the high temperature range they were interested in and still have the PETE process occur.
With the right material - most likely a semiconductor such as gallium arsenide, which is used in a host of common household electronics - the actual efficiency of the process could reach up to the 50 or 60 percent the researchers have calculated. They are already exploring other materials that might work.
Another advantage of the PETE system is that by using it in solar concentrators, the amount of semiconductor material needed for a device is quite small.
"For each device, we are figuring something like a six-inch wafer of actual material is all that is needed," Melosh said. "So the material cost in this is not really an issue for us, unlike the way it is for large solar panels of silicon."
The cost of materials has been one of the limiting factors in the development of the solar power industry, so reducing the amount of investment capital needed to build a solar farm is a big advance.
"The PETE process could really give the feasibility of solar power a big boost," Melosh said. "Even if we don't achieve perfect efficiency, let's say we give a 10 percent boost to the efficiency of solar conversion, going from 20 percent efficiency to 30 percent, that is still a 50 percent increase overall."
And that is still a big enough increase that it could make solar energy competitive with oil.
Provided by Stanford University
"This is really a conceptual breakthrough, a new energy conversion process, not just a new material or a slightly different tweak," said Nick Melosh, an assistant professor of materials science and engineering, who led the research group. "It is actually something fundamentally different about how you can harvest energy."
And the materials needed to build a device to make the process work are cheap and easily available, meaning the power that comes from it will be affordable.
Melosh is an assistant professor of materials science and engineering, and is senior author of a paper describing the tests the researchers conducted. It was published online August 1, in Nature Materials.
"Just demonstrating that the process worked was a big deal," Melosh said. "And we showed this physical mechanism does exist, it works as advertised."
Most photovoltaic cells, such as those used in rooftop solar panels, use the semiconducting material silicon to convert the energy from photons of light to electricity. But the cells can only use a portion of the light spectrum, with the rest just generating heat.
This heat from unused sunlight and inefficiencies in the cells themselves account for a loss of more than 50 percent of the initial solar energy reaching the cell.
If this wasted heat energy could somehow be harvested, solar cells could be much more efficient. The problem has been that high temperatures are necessary to power heat-based conversion systems, yet solar cell efficiency rapidly decreases at higher temperatures.
Until now, no one had come up with a way to wed thermal and solar cell conversion technologies.
Melosh's group figured out that by coating a piece of semiconducting material with a thin layer of the metal cesium, it made the material able to use both light and heat to generate electricity.
"What we've demonstrated is a new physical process that is not based on standard photovoltaic mechanisms, but can give you a photovoltaic-like response at very high temperatures," Melosh said. "In fact, it works better at higher temperatures. The higher the better."
While most silicon solar cells have been rendered inert by the time the temperature reaches 100 degrees Celsius, the PETE device doesn't hit peak efficiency until it is well over 200 degrees C.
Because PETE performs best at temperatures well in excess of what a rooftop solar panel would reach, the devices will work best in solar concentrators such as parabolic dishes, which can get as hot as 800 degrees C. Dishes are used in large solar farms similar to those proposed for the Mojave Desert in southern California and usually include a thermal conversion mechanism as part of their design, which offers another opportunity for PETE to help generate electricity, as well as minimizing costs by meshing with existing technology.
"The light would come in and hit our PETE device first, where we would take advantage of both the incident light and the heat that it produces, and then we would dump the waste heat to their existing thermal conversion systems," Melosh said. "So the PETE process has two really big benefits in energy production over normal technology."
Photovoltaic systems never get hot enough for their waste heat to be useful in thermal energy conversion, but the high temperatures at which PETE performs are perfect for generating usable high temperature waste heat. Melosh calculates the PETE process can get to 50 percent efficiency or more under solar concentration, but if combined with a thermal conversion cycle, could reach 55 or even 60 percent - almost triple the efficiency of existing systems.
The team would like to design the devices so they could be easily bolted on to existing systems, making conversion relatively inexpensive.
The researchers used a gallium nitride semiconductor in the 'proof of concept' tests. The efficiency they achieved in their testing was well below what they have calculated PETE's potential efficiency to be, which they had anticipated. But they used gallium nitride because it was the only material that had shown indications of being able to withstand the high temperature range they were interested in and still have the PETE process occur.
With the right material - most likely a semiconductor such as gallium arsenide, which is used in a host of common household electronics - the actual efficiency of the process could reach up to the 50 or 60 percent the researchers have calculated. They are already exploring other materials that might work.
Another advantage of the PETE system is that by using it in solar concentrators, the amount of semiconductor material needed for a device is quite small.
"For each device, we are figuring something like a six-inch wafer of actual material is all that is needed," Melosh said. "So the material cost in this is not really an issue for us, unlike the way it is for large solar panels of silicon."
The cost of materials has been one of the limiting factors in the development of the solar power industry, so reducing the amount of investment capital needed to build a solar farm is a big advance.
"The PETE process could really give the feasibility of solar power a big boost," Melosh said. "Even if we don't achieve perfect efficiency, let's say we give a 10 percent boost to the efficiency of solar conversion, going from 20 percent efficiency to 30 percent, that is still a 50 percent increase overall."
And that is still a big enough increase that it could make solar energy competitive with oil.
Provided by Stanford University
Stanford Unveils Solar Tech That Harnesses Light and Heat
Photo by Nick Melosh
We currently have two types of solar energy: energy generated from light, using silicon-based photovoltaic cells, and energy generated from heat, using solar concentrators and heat-conversion systems. What if we could collect both types of energy at once? Stanford researchers recently unveiled a new solar tech that can do exactly that — their PETE devices utilize a semiconducting material coated with cesium to boost efficiency levels up to 60 percent — three times that of existing systems.
Rooftop solar panels use silicon to convert light into electricity. But their efficiency declines rapidly at higher temperatures (like those needed to power heat-conversion systems). An either/or choice presents itself — but Stanford researchers found that a cesium coating allowed semiconducting materials to convert both light and heat into energy.
They dubbed the process PETE, for photon enhanced thermionic emission. Best of all, PETE devices could be cheaply and easily incorporated into existing solar collection systems. (Because the system hits peak efficiency at over 200 degrees Celsius, it’s not a good fit for rooftop arrays.) “The light would come in and hit our PETE device first,” explained lead researcher Nick Melosh. “We would take advantage of both the incident light and the heat that it produces, and then we would dump the waste heat to existing thermal conversion systems.”
PETE devices require only a small amount of semiconducting material, making them cheap. Melosh’s team also hopes to design devices that can easily be bolted on to existing solar collection systems, so that conversion would also be low-cost.
When used with the heat-conversion process, PETE devices could reach 60 percent efficiency. But even if they boost efficiency just to 30 percent, they will bring solar power down to the price point of oil. And that’s a good thing.
We currently have two types of solar energy: energy generated from light, using silicon-based photovoltaic cells, and energy generated from heat, using solar concentrators and heat-conversion systems. What if we could collect both types of energy at once? Stanford researchers recently unveiled a new solar tech that can do exactly that — their PETE devices utilize a semiconducting material coated with cesium to boost efficiency levels up to 60 percent — three times that of existing systems.
They dubbed the process PETE, for photon enhanced thermionic emission. Best of all, PETE devices could be cheaply and easily incorporated into existing solar collection systems. (Because the system hits peak efficiency at over 200 degrees Celsius, it’s not a good fit for rooftop arrays.) “The light would come in and hit our PETE device first,” explained lead researcher Nick Melosh. “We would take advantage of both the incident light and the heat that it produces, and then we would dump the waste heat to existing thermal conversion systems.”
PETE devices require only a small amount of semiconducting material, making them cheap. Melosh’s team also hopes to design devices that can easily be bolted on to existing solar collection systems, so that conversion would also be low-cost.
When used with the heat-conversion process, PETE devices could reach 60 percent efficiency. But even if they boost efficiency just to 30 percent, they will bring solar power down to the price point of oil. And that’s a good thing.